作为世界各地的Covid-19大流行横冲直撞,对视频会议激增的需求。为此,实时肖像分割成为一种流行的功能,以取代会议参与者的背景。虽然为从生命场景中提取身体姿势的分段提供了具有丰富的数据集,模型和算法,但纵向分割尚未在视频会议上下文中覆盖很好。为了促进该领域的进步,我们介绍了名为PP-Humanseg的开源解决方案。这项工作是第一个构建一个大型视频纵向数据集,其中包含291个会议场景中的291个视频,其中14K细微的帧和扩展到多摄像头电话。此外,我们提出了一种用于语义分割的新型语义连接感知学习(SCL),其引入了语义连接感知丢失,以提高来自连接的角度的分段结果。我们提出了一种超轻量级模型,具有SCL的实际肖像分割,实现IOO之间的最佳权衡和推理的速度。我们数据集的广泛评估展示了SCL和我们的模型的优越性。源代码可在https://github.com/paddlepaddle/paddleseg上获得。
translated by 谷歌翻译
Generative Adversarial Networks (GAN) training process, in most cases, apply Uniform or Gaussian sampling methods in the latent space, which probably spends most of the computation on examples that can be properly handled and easy to generate. Theoretically, importance sampling speeds up stochastic optimization in supervised learning by prioritizing training examples. In this paper, we explore the possibility of adapting importance sampling into adversarial learning. We use importance sampling to replace Uniform and Gaussian sampling methods in the latent space and employ normalizing flow to approximate latent space posterior distribution by density estimation. Empirically, results on MNIST and Fashion-MNIST demonstrate that our method significantly accelerates GAN's optimization while retaining visual fidelity in generated samples.
translated by 谷歌翻译
Multivariate time series forecasting with hierarchical structure is pervasive in real-world applications, demanding not only predicting each level of the hierarchy, but also reconciling all forecasts to ensure coherency, i.e., the forecasts should satisfy the hierarchical aggregation constraints. Moreover, the disparities of statistical characteristics between levels can be huge, worsened by non-Gaussian distributions and non-linear correlations. To this extent, we propose a novel end-to-end hierarchical time series forecasting model, based on conditioned normalizing flow-based autoregressive transformer reconciliation, to represent complex data distribution while simultaneously reconciling the forecasts to ensure coherency. Unlike other state-of-the-art methods, we achieve the forecasting and reconciliation simultaneously without requiring any explicit post-processing step. In addition, by harnessing the power of deep model, we do not rely on any assumption such as unbiased estimates or Gaussian distribution. Our evaluation experiments are conducted on four real-world hierarchical datasets from different industrial domains (three public ones and a dataset from the application servers of Alipay's data center) and the preliminary results demonstrate efficacy of our proposed method.
translated by 谷歌翻译
We describe PromptBoosting, a query-efficient procedure for building a text classifier from a neural language model (LM) without access to the LM's parameters, gradients, or hidden representations. This form of "black-box" classifier training has become increasingly important as the cost of training and inference in large-scale LMs grows. But existing black-box LM classifier learning approaches are themselves computationally inefficient, typically specializing LMs to the target task by searching in a large space of (discrete or continuous) prompts using zeroth-order optimization methods. Instead of directly optimizing in prompt space, PromptBoosting obtains a small pool of prompts via a gradient-free approach and then constructs a large pool of weak learners by pairing these prompts with different elements of the LM's output distribution. These weak learners are then ensembled using the AdaBoost algorithm. The entire learning process requires only a small number of forward passes and no backward pass. Experiments show that PromptBoosting achieves state-of-the-art performance in multiple black-box few-shot classification tasks, and matches or outperforms full fine-tuning in both few-shot and standard learning paradigms, while training 10x faster than existing black-box methods.
translated by 谷歌翻译
Robustness evaluation against adversarial examples has become increasingly important to unveil the trustworthiness of the prevailing deep models in natural language processing (NLP). However, in contrast to the computer vision domain where the first-order projected gradient descent (PGD) is used as the benchmark approach to generate adversarial examples for robustness evaluation, there lacks a principled first-order gradient-based robustness evaluation framework in NLP. The emerging optimization challenges lie in 1) the discrete nature of textual inputs together with the strong coupling between the perturbation location and the actual content, and 2) the additional constraint that the perturbed text should be fluent and achieve a low perplexity under a language model. These challenges make the development of PGD-like NLP attacks difficult. To bridge the gap, we propose TextGrad, a new attack generator using gradient-driven optimization, supporting high-accuracy and high-quality assessment of adversarial robustness in NLP. Specifically, we address the aforementioned challenges in a unified optimization framework. And we develop an effective convex relaxation method to co-optimize the continuously-relaxed site selection and perturbation variables and leverage an effective sampling method to establish an accurate mapping from the continuous optimization variables to the discrete textual perturbations. Moreover, as a first-order attack generation method, TextGrad can be baked into adversarial training to further improve the robustness of NLP models. Extensive experiments are provided to demonstrate the effectiveness of TextGrad not only in attack generation for robustness evaluation but also in adversarial defense.
translated by 谷歌翻译
Generative models have been widely studied in computer vision. Recently, diffusion models have drawn substantial attention due to the high quality of their generated images. A key desired property of image generative models is the ability to disentangle different attributes, which should enable modification towards a style without changing the semantic content, and the modification parameters should generalize to different images. Previous studies have found that generative adversarial networks (GANs) are inherently endowed with such disentanglement capability, so they can perform disentangled image editing without re-training or fine-tuning the network. In this work, we explore whether diffusion models are also inherently equipped with such a capability. Our finding is that for stable diffusion models, by partially changing the input text embedding from a neutral description (e.g., "a photo of person") to one with style (e.g., "a photo of person with smile") while fixing all the Gaussian random noises introduced during the denoising process, the generated images can be modified towards the target style without changing the semantic content. Based on this finding, we further propose a simple, light-weight image editing algorithm where the mixing weights of the two text embeddings are optimized for style matching and content preservation. This entire process only involves optimizing over around 50 parameters and does not fine-tune the diffusion model itself. Experiments show that the proposed method can modify a wide range of attributes, with the performance outperforming diffusion-model-based image-editing algorithms that require fine-tuning. The optimized weights generalize well to different images. Our code is publicly available at https://github.com/UCSB-NLP-Chang/DiffusionDisentanglement.
translated by 谷歌翻译
Foveated imaging provides a better tradeoff between situational awareness (field of view) and resolution and is critical in long-wavelength infrared regimes because of the size, weight, power, and cost of thermal sensors. We demonstrate computational foveated imaging by exploiting the ability of a meta-optical frontend to discriminate between different polarization states and a computational backend to reconstruct the captured image/video. The frontend is a three-element optic: the first element which we call the "foveal" element is a metalens that focuses s-polarized light at a distance of $f_1$ without affecting the p-polarized light; the second element which we call the "perifoveal" element is another metalens that focuses p-polarized light at a distance of $f_2$ without affecting the s-polarized light. The third element is a freely rotating polarizer that dynamically changes the mixing ratios between the two polarization states. Both the foveal element (focal length = 150mm; diameter = 75mm), and the perifoveal element (focal length = 25mm; diameter = 25mm) were fabricated as polarization-sensitive, all-silicon, meta surfaces resulting in a large-aperture, 1:6 foveal expansion, thermal imaging capability. A computational backend then utilizes a deep image prior to separate the resultant multiplexed image or video into a foveated image consisting of a high-resolution center and a lower-resolution large field of view context. We build a first-of-its-kind prototype system and demonstrate 12 frames per second real-time, thermal, foveated image, and video capture in the wild.
translated by 谷歌翻译
The rectified linear unit (ReLU) is a highly successful activation function in neural networks as it allows networks to easily obtain sparse representations, which reduces overfitting in overparameterized networks. However, in network pruning, we find that the sparsity introduced by ReLU, which we quantify by a term called dynamic dead neuron rate (DNR), is not beneficial for the pruned network. Interestingly, the more the network is pruned, the smaller the dynamic DNR becomes during optimization. This motivates us to propose a method to explicitly reduce the dynamic DNR for the pruned network, i.e., de-sparsify the network. We refer to our method as Activating-while-Pruning (AP). We note that AP does not function as a stand-alone method, as it does not evaluate the importance of weights. Instead, it works in tandem with existing pruning methods and aims to improve their performance by selective activation of nodes to reduce the dynamic DNR. We conduct extensive experiments using popular networks (e.g., ResNet, VGG) via two classical and three state-of-the-art pruning methods. The experimental results on public datasets (e.g., CIFAR-10/100) suggest that AP works well with existing pruning methods and improves the performance by 3% - 4%. For larger scale datasets (e.g., ImageNet) and state-of-the-art networks (e.g., vision transformer), we observe an improvement of 2% - 3% with AP as opposed to without. Lastly, we conduct an ablation study to examine the effectiveness of the components comprising AP.
translated by 谷歌翻译
The importance of learning rate (LR) schedules on network pruning has been observed in a few recent works. As an example, Frankle and Carbin (2019) highlighted that winning tickets (i.e., accuracy preserving subnetworks) can not be found without applying a LR warmup schedule and Renda, Frankle and Carbin (2020) demonstrated that rewinding the LR to its initial state at the end of each pruning cycle improves performance. In this paper, we go one step further by first providing a theoretical justification for the surprising effect of LR schedules. Next, we propose a LR schedule for network pruning called SILO, which stands for S-shaped Improved Learning rate Optimization. The advantages of SILO over existing state-of-the-art (SOTA) LR schedules are two-fold: (i) SILO has a strong theoretical motivation and dynamically adjusts the LR during pruning to improve generalization. Specifically, SILO increases the LR upper bound (max_lr) in an S-shape. This leads to an improvement of 2% - 4% in extensive experiments with various types of networks (e.g., Vision Transformers, ResNet) on popular datasets such as ImageNet, CIFAR-10/100. (ii) In addition to the strong theoretical motivation, SILO is empirically optimal in the sense of matching an Oracle, which exhaustively searches for the optimal value of max_lr via grid search. We find that SILO is able to precisely adjust the value of max_lr to be within the Oracle optimized interval, resulting in performance competitive with the Oracle with significantly lower complexity.
translated by 谷歌翻译
Mutual Information (MI) based feature selection makes use of MI to evaluate each feature and eventually shortlists a relevant feature subset, in order to address issues associated with high-dimensional datasets. Despite the effectiveness of MI in feature selection, we notice that many state-of-the-art algorithms disregard the so-called unique relevance (UR) of features, and arrive at a suboptimal selected feature subset which contains a non-negligible number of redundant features. We point out that the heart of the problem is that all these MIBFS algorithms follow the criterion of Maximize Relevance with Minimum Redundancy (MRwMR), which does not explicitly target UR. This motivates us to augment the existing criterion with the objective of boosting unique relevance (BUR), leading to a new criterion called MRwMR-BUR. Depending on the task being addressed, MRwMR-BUR has two variants, termed MRwMR-BUR-KSG and MRwMR-BUR-CLF, which estimate UR differently. MRwMR-BUR-KSG estimates UR via a nearest-neighbor based approach called the KSG estimator and is designed for three major tasks: (i) Classification Performance. (ii) Feature Interpretability. (iii) Classifier Generalization. MRwMR-BUR-CLF estimates UR via a classifier based approach. It adapts UR to different classifiers, further improving the competitiveness of MRwMR-BUR for classification performance oriented tasks. The performance of both MRwMR-BUR-KSG and MRwMR-BUR-CLF is validated via experiments using six public datasets and three popular classifiers. Specifically, as compared to MRwMR, the proposed MRwMR-BUR-KSG improves the test accuracy by 2% - 3% with 25% - 30% fewer features being selected, without increasing the algorithm complexity. MRwMR-BUR-CLF further improves the classification performance by 3.8%- 5.5% (relative to MRwMR), and it also outperforms three popular classifier dependent feature selection methods.
translated by 谷歌翻译